如图,将△ABC沿经过点A的直线AD折叠,使边AC所在的直线与边AB所在的直线重合,点C落在边AB上的E处.若∠B=45°,∠BDE=20°,则∠CAD=_.

问题描述:

如图,将△ABC沿经过点A的直线AD折叠,使边AC所在的直线与边AB所在的直线重合,点C落在边AB上的E处.若∠B=45°,∠BDE=20°,则∠CAD=______.

∵∠B=45°,∠BDE=20°,
∴∠AED=∠B+∠BDE=45°+20°=65°,
根据翻折的性质,∠C=∠AED=65°,∠CAD=∠BAD,
在△ABC中,∠BAC=180°-∠B-∠C=180°-45°-65°=70°,
∴∠CAD=

1
2
∠BAC=
1
2
×70°=35°.
故答案为:35°.