设圆过点A(2,-3),圆心在直线2x+y=0上,且与直线x-y-1=0相切,求该圆的标准方程【要过程和解题思路】
问题描述:
设圆过点A(2,-3),圆心在直线2x+y=0上,且与直线x-y-1=0相切,求该圆的标准方程【要过程和解题思路】
答
解题思路:设圆心O的坐标为(a,-2a),过O作直线x-y-1=0的垂线,交与B点,则:OB=OA,
直线x-y-1=0的斜率k=1,其垂线的斜率k'=-1/k=-1,
设垂线的方程为:y=-x+b,代入O的坐标,得:b=-a,即:y=-x-a,
与方程x-y-1=0联立解得:x=(-a-1)/2,y=(1-a)/2,即B点为((-a-1)/2,(1-a)/2),
OB=v{[a-(-a-1)/2]^2+[-2a-(1-a)/2]^2}=v(3a+1)^2/2,
OA=v[(a-2)^2+(-2a+3)^2]=v(5a^2-16a+13),
OB=OA,解得:a=19+-4v21,
半径r=OB=(3a+1)/v2,
圆的标准方程为:(x-a)^2+(y+2a)^2=r^2=(3a+1)^2/2.