已知等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=_.

问题描述:

已知等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=______.

a 25
a10,∴(a1q4)2a1q9
∴a1=q,
anqn
∵2(an+an+2)=5an+1
2an(1+q2) =5anq
∴2(1+q2)=5q,
解得q=2或q=
1
2
(等比数列{an}为递增数列,舍去)
an2n
故答案为:2n