已知等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=_.
问题描述:
已知等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=______.
答
∵
=a10,∴(a1q4)2=a1q9,
a
25
∴a1=q,
∴an=qn,
∵2(an+an+2)=5an+1,
∴2an(1+q2) =5anq,
∴2(1+q2)=5q,
解得q=2或q=
(等比数列{an}为递增数列,舍去)1 2
∴an=2n.
故答案为:2n.