如图,已知:AB为⊙O的弦(非直径),E为AB的中点,EO的延长线与⊙O相交于C,CM∥AB,BO的延长线与⊙O相交于F,与CM相交于D. ①求证:EC⊥CD; ②当EO:OC=1:3,CD=4时,求⊙O的半径.
问题描述:
如图,已知:AB为⊙O的弦(非直径),E为AB的中点,EO的延长线与⊙O相交于C,CM∥AB,BO的延长线与⊙O相交于F,与CM相交于D.
①求证:EC⊥CD;
②当EO:OC=1:3,CD=4时,求⊙O的半径.
答
①证明:E为弦AB(非直径)的中点,O为圆心,
∴∠OEB=90°,
∵∠ECD=∠OEB=90°,
即EC⊥CD;
②∵CD∥AB,EO:OC=1:3,
∴
=BO OD
=EO OC
,1 3
设OC=BO=x,则OD=3x,又CD=4,
在Rt△OCD中,由OC2+CD2=OD2,x2+42=(3x)2,
解得:x1=
,x2=-
2
(舍去),
2
∴BO=
,
2
即⊙O的半径为
.
2