数列{an}和{bn}都是公差不为0的等差数列,且limn→∞anbn=3,则limn→∞a1+a2+…+annb2n=_.

问题描述:

数列{an}和{bn}都是公差不为0的等差数列,且

lim
n→∞
an
bn
=3,则
lim
n→∞
a1+a2+…+an
nb2n
=______.

设数列{an}和{bn}公差分别为d1,d2

lim
n→∞
an
bn
=
lim
n→∞
a1 +(n−1)d1
b1 +(n−1)d 2
=
lim
n→∞
a1
n
+(1−
1
n
)  d1
b1
n
 +(1−
1
n
)d  2
=
d1
d2
=3
lim
n→∞
a1+a2+…+an
nb2n
=
lim
n→∞
na1 +
n(n−1)d1
2
n([b1 +(2n−1)d2]
=
1
2
d1
2d2
=
3
4

故答案为
3
4