矩形ABCD,E是BC上一点,DF⊥AE,(1)当AB=根号2,S△ABE:S△ADF:S CDFE=3:4:5,求AD

问题描述:

矩形ABCD,E是BC上一点,DF⊥AE,(1)当AB=根号2,S△ABE:S△ADF:S CDFE=3:4:5,求AD
(3)在(2)的条件下,若△CDF是等腰三角形,求BE的值

(1)
设三角形ABE面积为3S,
则S(ADF)=4S,S(CDFE)=5S
S(ABE):S(ABCD)=3S:(3S+4S+5S)=1:4
1/2*(根号2)*BE:(根号2)*AD=1:4
BE:AD=1:2
E是BC中点,
作辅助线DE,S(DEC)=S(ABE)=3S
S(DEF)=S(CDFE)-S(DEC)=2S=1/2*S(DAF)
所以AF:EF=2:1
设EF=X
则AF=2X,DE=AE=3X
DF^2=(3X)^2-X^2=8X^2
DA^2=DF^2+AF^2=8X^2+(2X)^2=12X^2
BE^2=1/4DA^2=3X^2
AB^2=AE^2-BE^2=(3X)^2-3X^2=6X^2=2
DA^2=12X^2=4
DA=2
(2)
问题呢?