如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原. (1)当点E与点A重合时,折痕EF的长
问题描述:
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当点E与点A重合时,折痕EF的长为______;
(2)写出使四边形EPFD为菱形的x的取值范围,并求出当x=2时菱形的边长;
(3)令EF2=y,当点E在AD、点F在BC上时,写出y与x的函数关系式(写出x的取值范围).
答
(1)∵纸片折叠,使点D与点P重合,得折痕EF,
当点E与点A重合时,
∵点D与点P重合是已知条件,
∴∠DEF=∠FEP=45°,
∴∠DFE=45°,即:ED=DF=1,
利用勾股定理得出EF=
,
2
∴折痕EF的长为
.
2
故答案为:
;
2
(2)∵要使四边形EPFD为菱形,
∴DE=EP=FP=DF,
只有点E与点A重合时,EF最长为
,此时x=1,
2
当EF最长时,点P与B重合,此时x=3,
∴探索出1≤x≤3
当x=2时,如图,连接DE、PF.
∵EF是折痕,
∴DE=PE,设PE=m,则AE=2-m
∵在△ADE中,∠DAP=90°,
∴AD2+AE2=DE2,即12+(2-m)2=m2,
解得 m=1.25,此时菱形EPFD的边长为1.25;
(3)过E作EH⊥BC;
∵∠EDO+∠DOE=90°,∠FEO+∠EOD=90°,
∴∠ODE=∠FEO,
∴△EFH∽△DPA,
∴
=FH EH
,AP AD
∴FH=3x;
∴y=EF2=EH2+FH2=9+9x2;
当F与点C重合时,如图,连接PF;
∵PF=DF=3,
∴PB=
=2
32-12
,
2
∴0≤x≤3-2
.
2