设a1,a2,a3为3维列向量,矩阵A=(a1,a2,a3),B=(a2,2a1+a2,a3).若行列式[A]=3,则行列式[B]=多少.
问题描述:
设a1,a2,a3为3维列向量,矩阵A=(a1,a2,a3),B=(a2,2a1+a2,a3).若行列式[A]=3,则行列式[B]=多少.
我用特解做的,请您帮我用正常的解法做,给点我明白的解题步骤.
答
对B进行初等列变换,C2-C1,然后对换C1跟C2两列(此时要多加个负号),即:-(2a1,a2,a3),所以|B|=-2|A|=-6,我也是刚学这个的,不知有没错.