设a1,a2,a3,a4,a5为自然数,A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},且a1<a2<a3<a4<a5,并满足A∩B={a1,a4},a1+a4=10,A∪B中的所有元素之和为256,则

问题描述:

设a1,a2,a3,a4,a5为自然数,A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},且a1<a2<a3<a4<a5,并满足A∩B={a1,a4},a1+a4=10,A∪B中的所有元素之和为256,则集合A为______.

由A∩B={a1,a4},且a1<a2<a3<a4<a5 ,得到只可能a1=a12,即a1=1,又a1+a4=10,∴a4=9,且a4=9=ai2(2≤i≤3),∴a2=3或a3=3,…(2分)①若a3=3时,a2=2,此时A={1,2,3,9,a5},B={1,4,9,81,a52},因a5...