高数f(x)=(x-1)(x+1)(x+1)(x+1)求导怎么求
问题描述:
高数f(x)=(x-1)(x+1)(x+1)(x+1)求导怎么求
答
取自然对数
lny=ln[(x-1)(x+1)(x+1)(x+1)]
=ln(x-1)+3ln(x+1)
两边求导得
y'/y=1/(x-1)+3/(x+1)
y'=[1/(x-1)+3/(x+1)]*y=[1/(x-1)+3/(x+1)]*(x-1)(x+1)(x+1)(x+1)