(2sinA+2)/(1+sinA+cosA)=tanA/2+1

问题描述:

(2sinA+2)/(1+sinA+cosA)=tanA/2+1

左边=(2sinA+2)/(1+sinA+cosA)
=2(sinA+1)/(1+sinA+cosA)
=2(cos^2A/2+sin^2A/2)^2/(2cos^2A/2+2sinA/2cosA/2)
=2(cosA/2+sinA/2)^2/2cosA/2(cosA/2+sinA/2)
=(cosA/2+sinA/2)/cosA/2
=[sinA/)/cosA/2]+1
=tanA/2+1
左边=右边问一下,第三步 除号前面是怎么化到的~~~一下子懂了~~谢谢楼主