证明极限不存在:当(x,y)趋于(0,0)时(x+y)/(x-y) 的极限
问题描述:
证明极限不存在:当(x,y)趋于(0,0)时(x+y)/(x-y) 的极限
是因为定义域D={(x,y)|x不等于y}吗,从哪儿入手呢,
答
沿着两条直线 y=2x
y=-2x 趋于(0,0)时
极限分别为 -3 和 -1/3 不相等
极限存在的定义要求 延任何过(0,0)直线求极限时 极限都相等
所以极限不存在