如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,过点C作CF⊥AE于点F,延长CF使CD=AE,连接BD.求证:BD⊥BC.
问题描述:
如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,过点C作CF⊥AE于点F,延长CF使CD=AE,连接BD.求证:BD⊥BC.
答
证明:∵∠ACB=90°,
∴∠BCD+∠ACF=90°,
∵CF⊥AE于点F,
∴∠AFC=90°,
∴∠ACF+∠EAC=90°,
∴∠DCB=∠EAC,
在△DBC和△ECA中,
,
BC=AC ∠DCB=∠EAC CD=AE
∴△DBC≌△ECA,
∴∠DBC=∠ACB=90°,
即BD⊥BC.