(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O. ①如图1,求证:△ABE≌△ADC; ②探究:如图1,∠BOC=_; 如图2,∠BOC=_

问题描述:

(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.

①如图1,求证:△ABE≌△ADC;
②探究:如图1,∠BOC=______;
如图2,∠BOC=______;
如图3,∠BOC=______;
(2)如图4,已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O.
①猜想:如图4,∠BOC=360÷n(用含n的式子表示);
②根据图4证明你的猜想.

(1)①证法一
∵△ABD与△ACE均为等边三角形,
∴AD=AB,AC=AE,
且∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠DAC=∠BAE,
∴△ABE≌△ADC(SAS).
证法二:
∵△ABD与△ACE均为等边三角形,
∴AD=AB,AC=AE,
且∠BAD=∠CAE=60°,
∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到,
∴△ABE≌△ADC,
②120°,90°,72°.

(2)①

360°
n

②证法一:依题意,知∠BAD和∠CAE都是正n边形的内角,
AB=AD,AE=AC,
∴∠BAD=∠CAE=
(n−2)180°
n

∴∠BAD-∠DAE=∠CAE-∠DAE,
即∠BAE=∠DAC,
∴△ABE≌△ADC(SAS),
∴∠ABE=∠ADC,
∵∠ADC+∠ODA=180°,
∴∠ABO+∠ODA=180°,
∵∠ABO+∠ODA+∠DAB+∠BOC=360°,
∴∠BOC+∠DAB=180°,
∴∠BOC=180°-∠DAB=180°−
(n−2)180°
n
360°
n

证法二:同上可证△ABE≌△ADC.
∴∠ABE=∠ADC,如图,延长BA交CO于F,
∵∠AFD+∠ABE+∠BOC=180°,∠AFD+∠ADC+∠DAF=180°,
∴∠BOC=∠DAF=180°-∠BAD=
360°
n

证法三:同上可证△ABE≌△ADC.
∴∠ABE=∠ADC.
∵∠BOC=180°-(∠ABE+∠ABC+∠ACB+∠ACD),
∴∠BOC=180°-(∠ADC+∠ABC+∠ACB+∠ACD),
∵∠ABC+∠ACB=180°-∠BAC,∠ADC+∠ACD=180°-∠DAC,
∴∠BOC=180°-(360°-∠BAC-∠DAC),
即∴∠BOC=180°-∠BAD=
360°
n

证法四:同上可证△ABE≌△ADC.
∴∠AEB=∠ACD.如图,连接CE,
∵∠BEC=∠BOC+∠OCE,
∴∠AEB+∠AEC=∠BOC+∠ACD-∠ACE,
∴∠BOC=∠AEC+∠ACE.
即∴∠BOC=180°-∠CAE=
360°
n

注意:此题还有其它证法.