已知直线y=ax+1与双曲线3x^2 -y^2=1 相交于两点A、B,是否存在实数a,使得A、B关
问题描述:
已知直线y=ax+1与双曲线3x^2 -y^2=1 相交于两点A、B,是否存在实数a,使得A、B关
于直线y=3x对称?若存在,求出a;若不存在,说明理由.
答
y=ax+1带入3x^2 -y^2=1
得到:(3-a^2)x^2 -2ax-2=0
X1+X2=2a/(3-a^2)
所以Y1+Y2=a(x1+x2)+2
假设如果存在则【(X1+X2)/2 (Y1+Y2)/2 】一定在直线y=3x上
带入算.
a=1
所以存在