数列的前n项和为Sn,且Sn=1-2/3An,则lim Sn=?
问题描述:
数列的前n项和为Sn,且Sn=1-2/3An,则lim Sn=?
答
n=1时 A1=S1=1-(2/3)A1 解得A1=3/5n>1时 Sn=1-2/3AnS(n-1)=1-(2/3)A(n-1)两式相减得An=Sn-S(n-1)=-(2/3)An+(2/3)A(n-1)所以An=(2/5)*A(n-1)所以{An}是公比为2/5的等比数列故An=(3/5)*(2/5)^(n-1)所以Sn=1-(2/3)An=1-...