定义域内一阶导数为零二阶导数也为零的点一定不是极值点?对吗?

问题描述:

定义域内一阶导数为零二阶导数也为零的点一定不是极值点?对吗?
(1)为啥不对?
(2)如果定义域内一阶导为零二阶导不为零,则一定为极值点,此命题正确是吧?为啥?

(1)y=x^3,在0点1阶导数、2阶导数都=0,但0不是它的极值点
(显然在0的任意邻域内都不是最大/最小值)
(2)二阶导不为零说明一阶导在该点附近的符号发生改变,所以一定是极值点
(二阶导>0说明一阶导在该点附近始终单增,而一阶导在该点又=0,
所以在该点左边一定一阶导0,那么显然就是极值点了)