如图,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AE是角平分线,交CD于F,FM∥AB且交BC于M,则CE与MB的大小关系怎样?证明你的结论.
问题描述:
如图,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AE是角平分线,交CD于F,FM∥AB且交BC于M,则CE与MB的大小关系怎样?证明你的结论.
答
证明:∵AE是角平分线,
∴∠CAE=∠BAE,
∵∠ACB=90°,CD⊥AB,
∴∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,
∴∠AEC=∠AFD,
∵∠AFD=∠CFE(对顶角相等),
∴∠AEC=∠CFE,
∴CE=CF,
过点M作MN∥AE,
∴∠BAE=∠BNM,
∴∠CAE=∠BNM,
又∵FM∥AB,
∴四边形ANMF是平行四边形,
∴AF=MN,
∵∠B+∠BAC=90°,∠ACF+∠BAC=90°,
∴∠B=∠ACF,
在△ACF和△NBM中,
,
∠CAE=∠BNM ∠B=∠ACF AF=MN
∴△ACF≌△NBM(AAS),
∴CF=MB,
∴CE=MB.