若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003•a2004<0,则使前n项和Sn>0成立的最大自然数n是_.

问题描述:

若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003•a2004<0,则使前n项和Sn>0成立的最大自然数n是______.

∵数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003•a2004<0,
∴a20140,
∴a1+a4005=2a2013>0,
a1+a4007=2a2014<0,
∴a1+a4006=a2003+a2004>0,
∴S4006=

4006
2
(a1+a4006)>0,
S4007
4007
2
(a1+a4007)
<0,
使前n项和Sn>0成立的最大自然数n=4006.
故答案为:4006.