设z=f(x,y)=arctanx/y ,y=√(x^2+1) ,求dz/dx
问题描述:
设z=f(x,y)=arctanx/y ,y=√(x^2+1) ,求dz/dx
答案是1/(x^2+y^2)*(√x^2+1)
答
哦,刚才最后一步化简错了,更正一下:z'=1/[1+(x/y)²]* (x/y)'=1/[1+(x/y)²] *(y-xy')/y²=(y-xy')/(y²+x²)而y'=1/[2√(x²+1)]*2x=x/√(x²+1)所以z'=[√(x²+1)-x²/√(x&...