如图,梯形ABCD中,AD∥BC(AD<BC),AC、BD交于点O,若S△OAB=6/25S梯形ABCD,则△AOD与△BOC的周长之比是_.

问题描述:

如图,梯形ABCD中,AD∥BC(AD<BC),AC、BD交于点O,若S△OAB=

6
25
S梯形ABCD,则△AOD与△BOC的周长之比是______.

设AD=m,BC=n,(m<n),
由AD∥BC可知,AO:OC=DO:OB=m:n,
∴S△OAD=

m
n
S△OAB,S△OCB=
n
m
S△OAB
∴S梯形ABCD=S△OAB+S△OCD+S△OAD+S△OCB
=2S△OAB+
m
n
S△OAB+
n
m
S△OAB
=
(m+n)2
mn
S△OAB
∵S△OAB=
6
25
S梯形ABCD
(m+n)2
mn
=
25
6

∴6m2-13mn+6n2=0,
解得
m
n
=
2
3
3
2

∵m<n,∴
m
n
=
2
3

∴△AOD与△BOC的周长之比=AD:BC=m:n=2:3.
故答案为:2:3.