如图所示,光滑的水平面上,用弹簧相连的质量均为2kg的a、b两物块都以v0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在正前方,如图所示.b与c碰撞后二者粘在一起运动,在
如图所示,光滑的水平面上,用弹簧相连的质量均为2kg的a、b两物块都以v0=6m/s的速度向右运动,弹簧处于原长,质量为4kg的物块C静止在正前方,如图所示.b与c碰撞后二者粘在一起运动,在以后的运动中,
(1)弹簧最短时a的速度是多少?
(2)弹簧的弹性势能最大为多少?
(3)物块a的最小速度是多少?
(1)由b、C碰撞瞬间,b、C的总动量守恒,选向右的方向为正,由动量守恒定律得:
mbv0=(mb+mC)v
代入数据解得:v=
=
mbv0
mb+mC
m/s=2m/s;2×6 2+4
(2)三个物体速度相同时弹簧的弹性势能最大,选向右的方向为正,对三个物体组成的系统,由动量守恒定律得:
mav0+mbv0=(ma+mb+mC)v共,
代入数据解得:v共=
=
mav0+mbv0
ma+mb+mc
m/s=3m/s2×6+2×6 2+2+4
设最大弹性势能为Ep,由机械能守恒得:Ep=
ma1 2
+
v
20
(mb+mC)v2-1 2
(ma+mb+mC)1 2
v
2共
代入数据解得:EP=[
×2×62+1 2
×(2+4)×22-1 2
×(2+2+4)×32]J=12J1 2
(3)bC碰撞后,弹簧开始压缩,a受到向左的弹力做减速运动,弹簧恢复原长时,a的速度最小.
根据三个物体组成的系统的动量守恒和机械能守恒得:
mav0+mbv0=mava+(mb+mC)vbc,
ma1 2
+
v
20
(mb+mC)v2=1 2
ma1 2
+
v
2a
(mb+mC)1 2
v
2bc
代入解得,va=0
答:(1)弹簧最短时a的速度是3m/s.(2)弹簧的弹性势能最大为12J.(3)物块a的最小速度是0.