如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带有+QA和+QB的电荷量,质量分别为mA和mB.两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩.整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B一直在水平面上运动且不会碰到滑轮.试求:(1)开始A、B静止时,挡板P对物块A的作用力大小;(2)若在小钩上挂质量为M的物块C并由静止释放,当物块C下落到最大距离时物块A对挡板P的压力恰好为零,求物块C下落的最大距离;(3)若C的质量改为2M,则当A刚离开挡板P时,B的速度多大?

问题描述:

如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带有+QA和+QB的电荷量,质量分别为mA和mB.两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩.整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B一直在水平面上运动且不会碰到滑轮.试求:

(1)开始A、B静止时,挡板P对物块A的作用力大小;
(2)若在小钩上挂质量为M的物块C并由静止释放,当物块C下落到最大距离时物块A对挡板P的压力恰好为零,求物块C下落的最大距离;
(3)若C的质量改为2M,则当A刚离开挡板P时,B的速度多大?

(1)开始A、B静止时,AB受力平衡,水平方向有:N=E(QA+QB)(2)开始时弹簧形变量为x1,由平衡条件:kx1=EQB 得:x1=EQBk…①设当A刚离开档板时弹簧的形变量为x2:由:kx2=EQA 得:x2=EQAk…②故C下降的最大...
答案解析:(1)开始A、B静止时,把AB看成一个整体,根据平衡条件即可求解挡板P对物块A的作用力大小;
(2)初始状态弹簧处于压缩状态,形变量为 x1,物块A对挡板P的压力恰为零,但不会离开P,此时A、B、C连同弹簧组成的系统共同瞬间静止,A所受电场力与弹簧的弹力大小相等,方向相反,可求弹簧的伸长量x2,两者之和也就是C物体的下降距离,此过程中C重力是能的减少量恰等于弹簧弹性势能与B电势能的增量之和.
(3)若C的质量改为2M,则当A刚离开挡板P时,弹簧的伸长量仍为x2,但此时A物体静止但B、C两物体的速度相等且不为零,此过程中C物体重力势能减少量等于B物体机械能和电势能的增量、弹簧弹簧弹性势能增量及系统动能的增量之和.
考试点:牛顿第二定律;匀变速直线运动的速度与时间的关系;胡克定律.
知识点:本题过程较繁杂,涉及功能关系多,有弹性势能、电势能、重力势能等之间的转化,全面考察了学生综合分析问题能力和对功能关系的理解及应用,难度较大.对于这类题目在分析过程中,要化繁为简,即把复杂过程,分解为多个小过程分析,同时要正确分析受力情况,弄清系统运动状态以及功能关系.