已知数列an中a1+a2……an=(3^n-2^)/2^n 求证an是等比数列

问题描述:

已知数列an中a1+a2……an=(3^n-2^)/2^n 求证an是等比数列

a1+a2……+an=(3^n-2^n)/2^n
即Sn=(3^n-2^n)/2^n,
Sn=(3/2)^n-1.
当n=1时,a1=S1=3/2-1=1/2.
当n≥2时,an= Sn-S(n-1)= (3/2)^n-1-[(3/2)^(n-1)-1]
= (3/2)^n-(3/2)^(n-1)= 1/2•(3/2)^(n-1),
∴an=1/2•(3/2)^(n-1).(n∈N*)
数列{an}是公比为3/2的等比数列.