若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是

问题描述:

若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是
多少?

由方程得:O(0,0),F(-1,0)设P点坐标(X,Y)(-2≤X≤2,-√3≤Y≤√3)则3X²+4Y²=12向量OP=(X,Y),FP=(X+1,Y)∴OP乘FP=X²+X+Y²∵3X²+4Y²=12∴Y²=(12-3X²)/4∴OP乘F...