已知f(a)=2a(1-ln2a)证明当a∈(0,∞)时,f(a)≤1
问题描述:
已知f(a)=2a(1-ln2a)证明当a∈(0,∞)时,f(a)≤1
答
f'(a)=2(1-ln2a)+2a*[-1/(2a)*2]
=2-2ln2a-2
=-2ln2a
所以0导求的不对阿。f(a)=2a-2aln2af'(a)=2-(2ln2a+2a*1/2a)=2-2ln2a-1=1-2ln2a(ln2a)'还要对2a求导哦哦对,谢谢昂