如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转

问题描述:

如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是(  )
A. (2010,2)
B. (2010,−2)
C. (2012,−2)
D. (0,2)

由已知可以得到,点P1,P2的坐标分别为(2,0),(2,-2).
记P2(a2,b2),其中a2=2,b2=-2.
根据对称关系,依次可以求得:P3(-4-a2,-2-b2),P4(2+a2,4+b2),P5(-a2,-2-b2),P6(4+a2,b2).
令P6(a6,b2),
同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),
由于2010=4×502+2,所以点P2010的坐标为(2010,-2).
故选B.