已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1)

问题描述:

已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1)
(1)求证:数列{an+1}是等比数列
(2)求数列{an}、{bn}的通项公式.

Sn=2an - n,S(n-1)=2a(n-1) - (n-1)
Sn-S(n-1)=an=2an - 2 a(n-1)-1 ,2a(n-1)=an -1
an +1= 2 [a(n-1)+1],(an +1)/[a(n-1)+1] = 2
所以(an +1)是公比为2的等比数列.
a1=2a1-1,a1=1,a1 +1=2
an +1= 2*2^(n-1) = 2^n an = 2^n -1
bn=log2(an +1) = log2(2^n) =n