从10到20这11个自然数中,任取7个数,证明其中一定有两个数之和是29.
问题描述:
从10到20这11个自然数中,任取7个数,证明其中一定有两个数之和是29.
答
29=10+19=11+18=12+17=13+16=14+15
如要满足任取7个数,其中每两个数的和均不能等于29,则10和19,11和18,12和17,13和16,14和15不能同时取到.除去这10个数,仅剩下20一个数.若不取20,要取7个数,则至少有两组,满足和等于29.若取20,在10个数中必须取6个,则至少有一组两个数同时取到,和等于29.
因此从10到20这11个自然数中,任取7个数,其中一定有两个数之和是29.