根据函数极限定义证明: lim(x~1)x^2-3x+2/(x_1)=-1
问题描述:
根据函数极限定义证明: lim(x~1)x^2-3x+2/(x_1)=-1
答
lim(x~1)x^2-3x+2/(x-1)=lim(x~1)(x-2)(x-1)/(x-1)=lim(x~1)(x-2)=-1
根据函数极限定义证明: lim(x~1)x^2-3x+2/(x_1)=-1
lim(x~1)x^2-3x+2/(x-1)=lim(x~1)(x-2)(x-1)/(x-1)=lim(x~1)(x-2)=-1