已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求证:AE⊥CE.

问题描述:

已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求证:AE⊥CE.

证明:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵AE平分∠BAC,CE平分∠ACD,
∴∠EAC=

1
2
∠BAC,∠ACE=
1
2
∠ACD,
∴∠EAC+∠ACE=
1
2
(∠BAC+∠ACD)=90°,
∴∠AEC=180°-(∠EAC+∠ACE)=90°,
∴AE⊥CE.