①已知数列{an}的an=(-1)n次方(2n-1)求数列an前40项和.②求和:sn=1/2×4+1/3×5+1/4×6
问题描述:
①已知数列{an}的an=(-1)n次方(2n-1)求数列an前40项和.②求和:sn=1/2×4+1/3×5+1/4×6
+.+1/(n+1)(n+3)③数列1,(1+2),(1+2+2²),.,(1+2+2²+...+2的n-1次方)...(1)求an通项公式(2)求前n项和sn.
答
①an=(-1)^n*(2n-1),数列an前40项和=(-1+3)+(-5+7)+……+(-77+79)=2*20=40.②1/[(n+1)(n+3)]=(1/2)[1/(n+1)-1+3)],∴Sn=(1/2)[1/2-1/4+1/3-1/5+1/4-1/6+……+1/(n+1)-1/(n+3)]=(1/2)[1/2+1/3-1/(n+2)-1/(n+3)]...