1`已知 a,b是锐角,a+b≠派/2,且满足3sinb=sin(2a+b).

问题描述:

1`已知 a,b是锐角,a+b≠派/2,且满足3sinb=sin(2a+b).
求证:tan(a+b)=2tana
2`已知向量a=(1-tanX,1),b=(1+sina2X+cos2X,-3),记f(X)=a.b
(1)求定义域,值域以及最小正周期
(2)若f(a/2)-f(a/2+派/4)=根号下6,其中a(0,派/2),求a

1.3sin(a+b-a)=sin(a+b+a) ,3[sin(a+b)cosa-cos(a+b)sinA]=sin(a+b)cosa+cos(a+b)sina2sin(a+b)cosa=4cos(a+b)sinAtan(a+b)=2tana2.f(x)=(1-tanx)(1+sin2x+cos2x)-3,"代表平方=1+sin2x+cos2x+(sinx/cosx)(sinx"+cosx...