设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵

问题描述:

设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵

对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0
故A^T A是正定阵