求二项式定理公式和 和差化积公式

问题描述:

求二项式定理公式和 和差化积公式

答:二次项定理
a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个,
这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二次展开式,其中的系数Cnr(r=0,1,……n)叫做二次项系数,式中的Cnran-rbr.叫做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=Cnraa-rbr.
说明 ①Tr+1=cnraa-rbr是(a+b)n的展开式的第r+1项.r=0,1,2,……n.它和(b+a)n的展开式的第r+1项Cnrbn-rar是有区别的.
②Tr+1仅指(a+b)n这种标准形式而言的,(a-b)n的二项展开式的通项公式是Tr+1=(-1)rCnran-rbr.
③系数Cnr叫做展开式第r+1次的二项式系数,它与第r+1项关于某一个(或几个)字母的系数应区别开来.
特别地,在二项式定理中,如果设a=1,b=x,则得到公式:
(1+x)n=1+cn1x+Cn2x2+…+Cnrxa+…+xn.
当遇到n是较小的正整数时,我们可以用杨辉三角去写出相
积化和差公式:
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
和差化积公式:
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2](X-Y)]