如图,在△ABC中,∠B=63゜,∠C=51゜,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.

问题描述:

如图,在△ABC中,∠B=63゜,∠C=51゜,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.

∠BAC=180°-∠B-∠C=180°-63°-51°=66°,
∵AE是∠BAC的平分线,
∴∠EAC=

1
2
∠BAC=33°,
在直角△ADC中,∠DAC=90°-∠C=90°-51°=39°,
∴∠DAE=∠DAC-∠EAC=39°-33°=6°.
答案解析:根据三角形内角和定理求得∠BAC的度数,则∠EAC即可求解,然后在△ACD中,利用三角形内角和定理求得∠DAC的度数,根据∠DAE=∠DAC-∠EAC即可求解.
考试点:三角形内角和定理.

知识点:本题考查了三角形的内角和定理以及角平分线的定义,正确理解∠DAE=∠DAC-∠EAC是关键.