圆台侧面展开图的扇环圆心角是怎么求?

问题描述:

圆台侧面展开图的扇环圆心角是怎么求?
即推导:θ=2π(R-r)/L.

圆台侧面展开图的扇环圆心角是怎么求?
设圆台上底半径为r,下底半径为R,侧母线长为L,其通过圆台轴线的纵向剖面是一个等腰
梯形ABCD,AB=CD=L;BC=2R是下底直径,AD=2r是上底直径;延长BA和CD使其相交于O,
这个O就是展开图扇环的中心.AD,BC的中垂线必通过O,这条中垂线就是圆台的轴线.
设AD的中点为M,BC的中点为N;由于RT△OMD~RT△ONC,∴OD/OC=r/R,设OD=x,则
故x= OC×r/R=(x+L)×r/R,故x=rL/(R-r);将圆台侧面展开,设展开图的圆心角为θ,那么有等式:
xθ=2πr,故θ=2πr/x,将x=rL/(R-r)代入,即得θ=2π(R-r)/L.