设向量组a1,a2,a3 线性无关,证明向量组a1+2a2,a2+2a3,a3+2a1 线性无关.
问题描述:
设向量组a1,a2,a3 线性无关,证明向量组a1+2a2,a2+2a3,a3+2a1 线性无关.
答
证明:因为 (a1+2a2,a2+2a3,a3+2a1)=(a1,a2,a3)K其中K=1 0 22 1 00 2 1因为a1,a2,a3线性无关,所以r(a1+2a2,a2+2a3,a3+2a1)=r(K).因为 |K|= 9所以 r(a1+2a2,a2+2a3,a3+2a1)=r(K)=3所以 a1+2a2,a2+2a3,a3+2a1 线性无关....