设向量组a1,a2...ar线性相关,而其中任意r-1个向量均线性无关,证明:要使k1a1+k2a2+...+krar=0成立,k1,k2...kr必全为零或全不为零
问题描述:
设向量组a1,a2...ar线性相关,而其中任意r-1个向量均线性无关,证明:要使k1a1+k2a2+...+krar=0成立,k1,k2...kr必全为零或全不为零
答
证明:ki=0,i=1,2,……,r ,时显然成立由a1,a2...ar线性相关,则存在不全为0的数ki使得k1a1+k2a2+...+krar=0成立,不妨设k1≠0,则a1=(-1/ki)(k2a2+……+krar),即a1可以由a2,……,ar线性表出,假设kj=0,j≠1,则有a1=...