设函数f在[1]上存在二阶连续导数,且满足f(0)=f(1)=0,证明∫(1,0)f(x)dx=1/2∫(1,0)x(x-1)f"(x)dx

问题描述:

设函数f在[1]上存在二阶连续导数,且满足f(0)=f(1)=0,证明∫(1,0)f(x)dx=1/2∫(1,0)x(x-1)f"(x)dx