y=lnx,x∈[1,e]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值
问题描述:
y=lnx,x∈[1,e]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值
答
f(x1)-f(x0)=f'(ζ)(x1-x0) lne-ln1=1/ζ*(e-1)ζ=e-1 望采纳谢谢
y=lnx,x∈[1,e]在给定区间上满足拉格朗日中值定理,并求出结论中ξ值
f(x1)-f(x0)=f'(ζ)(x1-x0) lne-ln1=1/ζ*(e-1)ζ=e-1 望采纳谢谢