已知tan(α+π4)=1/3. (Ⅰ)求tanα的值; (Ⅱ)求2sin2α−sin(π−α)sin(π2−α)+sin2(3π2+α)的值.

问题描述:

已知tan(α+

π
4
)=
1
3

(Ⅰ)求tanα的值;
(Ⅱ)求2sin2α−sin(π−α)sin(
π
2
−α)+sin2(
2
+α)
的值.

(Ⅰ)∵tan(α+

π
4
)=
tanα+1
1−tanα
1
3
,∴tanα=−
1
2

(Ⅱ)原式=2sin2α-sinαcosα+cos2α
=
2sin2α−sinαcosα+cos2α
sin2α+cos2α
=
2tan2α−tanα+1
tan2α+1
=
(−
1
2
)
2
−(−
1
2
)+1
(−
1
2
)
2
+1
8
5