函数f(x)的定义域为R,并满足以下条件:(1)对任意x,y属于R,有f(x)>0,(2)对任意x,y属于R有f(xy)=[f(x)]^y (3)f(1/3)>1 求f(0)的值;求证:f(x)在R上是单调递增函数;若a>b>c>0,且b^

问题描述:

函数f(x)的定义域为R,并满足以下条件:(1)对任意x,y属于R,有f(x)>0,(2)对任意x,y属于R有f(xy)=[f(x)]^y (3)f(1/3)>1 求f(0)的值;求证:f(x)在R上是单调递增函数;若a>b>c>0,且b^2=ac,求证:f(a)+f(c)>2f(b)

f(xy)=[f(x)]^y令x=a,则f(ay)=[f(a)]^y显然,f(a)为一常数,设为c则,f(ay)=c^y令ay=t,则:f(t)=c^(t/a)那么函数f(x)为指数函数,可设为y=M^x因为:f(0)=1同时,f(x)在R上是单调递增函数则,x>0时,f(x)>1,则M>1则[f(a)]^2+...