已知数列{an}满足a1=1,an+a(n+1)=-2n 求证(1)数列{a2n}与{a(2n-1)}均是以2为公差的等差数列;
问题描述:
已知数列{an}满足a1=1,an+a(n+1)=-2n 求证(1)数列{a2n}与{a(2n-1)}均是以2为公差的等差数列;
试用n表示和试M=a1a2-a2a3+…+(-1)^(k+1 )*aka(k+1)+...+a(2n-1)a2n-a2na(2n+1)
答
an+a(n+1)=-2n 推得 a(n+1)+a(n+2)=-2(n+1) 由1-2式得 an-a(n+2)=2所以M=a2(an-a(n+2).+a(2n)[a(2n-1)-a(2n+1)]=(a2+a4+a6+.+a(2n))*2因为 an-a(n+2)=2所以a(2n)-a(2(n-1))=a(2n)-a(2n-2)=2 同理(1)数列{a2n}与...(2) 试用n表示和试M=a1a2-a2a3+…+(-1)^(k+1 )*aka(k+1)+...+a(2n-1)a2n-a2na(2n+1)拜托了,详解M=a2[a1-a(1+2)]+a4[(a3-a(3+2)]..........+a(2n)[a(2n-1)-a(2n+1)]=(a2+a4+a6+......+a(2n))*2=(a2+a4+a6+......+a(2n))*2那是因为a1-a(1+2)=2 a3-a(3+2)=2....