求曲线积分∫(x^2+y)dx-(x+sin^2y)dy,其中L是圆周y=根号下2x-x^2上由点(0,0)到(2,0)上一段
问题描述:
求曲线积分∫(x^2+y)dx-(x+sin^2y)dy,其中L是圆周y=根号下2x-x^2上由点(0,0)到(2,0)上一段
答
自行画图补线段L1:y=0,x从2到0,这样L+L1构成封闭曲线,可以使用格林公式,注意本封闭曲线为顺时针旋转,与格林公式中的逆时针不符,所以用格林公式时要多加一个负号.∮(x^2+y)dx-(x+sin^2y)dy=∫∫(1+1)dxdy=2∫∫1dxdy...