(x^2-y)dx-(x+sin^2y)dy,L为圆周y=√(2x-x^2)上由点(0,0)到(1,1)的一段孤∫(x^2-y)dx-(x+sin^2y)dy,L为圆周y=√(2x-x^2)上由点(0,0)到(1,1)的一段孤 求此曲线积分 用 格林公式
问题描述:
(x^2-y)dx-(x+sin^2y)dy,L为圆周y=√(2x-x^2)上由点(0,0)到(1,1)的一段孤
∫(x^2-y)dx-(x+sin^2y)dy,L为圆周y=√(2x-x^2)上由点(0,0)到(1,1)的一段孤 求此曲线积分 用 格林公式
答
∵令M=x^2-y,N=-(x+sin^2y)==>αM/αy=αN/αx=-1∴由格林公式,知此积分与积分路径无关于是,选择(0,0)->(1,0)->(1,1)的积分路径得 ∫(x^2-y)dx-(x+sin^2y)dy=∫x^2dx-∫(1+sin^2y)dy=1/3-(3/2-sin2/4)=sin2/4-7/6....