如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM,CD分别交于点E、F.求证:∠BEN=∠NFC.
问题描述:
如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM,CD分别交于点E、F.求证:∠BEN=∠NFC.
答
证明:取AC中点G,连接NG,MG,
∵点M,G,N分别是边AD,AC,BC的中点,
∴MG、NG分别是△ADC与△ABC的中位线,
∴NG∥AB,MG∥CF,NG=
AB,MG=1 2
CD,1 2
∴∠BEN=∠FNG,∠CFN=∠NMG,
∵NG=
AB,MG=1 2
CD,AB=CD,1 2
∴NG=MG,
∴∠MNG=∠GMN,
∵∠MNG=∠BEN,
∠GMN=∠CFN,
∴∠BEN=∠CFN.