求证:1−2sin2xcos2xcos22x−sin22x=1−tan2x1+tan2x.

问题描述:

求证:

1−2sin2xcos2x
cos22x−sin22x
1−tan2x
1+tan2x

证明:左边=

cos22x+sin22x−2sin2xcos2x
cos22x−sin22x

=
(sin2x−cos2x)2
(cos2x+sin2x)(cos2x−sin2x)

=
cos2x−sin2x
sin2x+cos2x

=
1−tan2x
1+tan2x
=右边