数列{an}的前n项和Sn满足log2^(Sn-1)=n+1,则an=
问题描述:
数列{an}的前n项和Sn满足log2^(Sn-1)=n+1,则an=
答
∵log2(Sn-1)=n+1,
∴2n+1=Sn-1,得Sn=2n+1+1,
于是当n≥2时,an=Sn-Sn-1=2n-2n+1,
当n=1时,a1=S1=3,
综上,an=3,n=1时,an=2n-2n+1,n大于等于2时