方程x2-2x+2=0的根在复平面上对应的点是A、B,点C对应的复数满足:(1+i)2(1+z)=-6,求△ABC的最大内角的大小.

问题描述:

方程x2-2x+2=0的根在复平面上对应的点是A、B,点C对应的复数满足:(1+i)2(1+z)=-6,求△ABC的最大内角的大小.

解方程x2-2x+2=0得:x=1±i,
则根对应的点的坐标是A(1,1),B(1,-1).
又由(1+i)2(1+z)=-6解得z=-1+3i,则C(-1,3).

AC
=(-2,2),
AB
=(0,-2)
∴cosA=
AC
AB
|
AC
|•|
AB
|
=-
2
2

∴A=135°
即三角形的最大内角的大小是135°.